378 research outputs found

    Hydraulic conditions over bed forms control the benthic fauna distribution in a lowland river (Spree River, Germany).

    Get PDF
    River engineeringRiver habitat management and restoratio

    Amphibian Diversity and Nestedness in a Dynamic Floodplain River (Tagliamento, NE-Italy)

    Get PDF
    Amphibian distribution and assemblage structure were investigated along the last morphologically intact river corridor in Central Europe (Tagliamento). Thirteen taxa were identified with Rana latastei and Bufo bufo being the predominant species. In the main study reach, a 2km2 dynamic island-braided floodplain in the middle section of the river, 130 water bodies were delineated that were situated either in the active floodplain (82 sites) or in the adjacent riparian forest (48 sites). Results demonstrated that the active floodplain increased appreciably the available habitat for amphibians, despite frequent disturbances by floods or droughts. Amphibian richness within a given habitat was significantly correlated with distance from vegetated islands, fish density, and water temperature. In the active floodplain, species distribution was highly predictable, exhibiting nearly perfect nestedness, suggesting that selective colonisation and extinction processes predominated. The degree of nestedness was much higher than in the adjacent riparian forest or in regulated floodplains in Central Europe. Results clearly emphasise that amphibians can exploit the entire hydrodynamic gradient, except the main channel. In the active floodplain, vegetated islands and large woody debris are important, directly and indirectly, in maintaining both habitat and amphibian diversity and density in this gravel-bed rive

    Limaria hians (Mollusca : Limacea): a neglected reef-forming keystone species

    Get PDF
    1. A key component of physical habitat along braided river systems is the exposed riverine sediment within the active zone. The relatively unmanaged, gravel-bed Fiume Tagliamento, Italy, provides the focus for exploring two ecologically important properties of exposed riverine sediments: their within-patch and between-patch variability in calibre. 2. To characterize between-patch variation in exposed riverine sediments, replicate (within-patch) samples were obtained from three geomorphologically distinct locations along 130 km of the river: bar heads along the margin of the low-flow channel, the heads of major bars across the exposed surface of the active zone, and floodplain surfaces. A photographic technique enabled rapid and consistent field sampling of the coarse sediments at bar heads along the low-flow channel margin and on major bars across the dry bed. 3. A downstream decrease in particle size and an increase in within-patch heterogeneity in sediment size were observed within bar head sediments along the margin of the low-flow channel. Comparisons between major bar and low-flow channel samples revealed greatest within-patch variability in individual sediment size indices (D50, A- and B-axes of the larger particles) at headwater sites, greatest between-patch variability in the three measured indices in the central reaches, and lowest between-patch variability at downstream sites. However, there was a distinct increase in the overall heterogeneity in particle size, which was sustained across all patches, in a downstream direction. 4. There was a clear downstream decrease in the size of floodplain sediments in the headwaters, but thereafter there was no distinct downstream trend in any of the calculated particle size indices. 5. The geomorphological controls on the observed patterns and the potential ecological significance of the patterns, particularly for plant establishment, are discussed in relation to the relative relief of the active zone, and the highly variable hydrological and climatic regime along the river

    Combined effects of life-history traits and human impact on extinction risk of freshwater megafauna.

    Get PDF
    Megafauna species are intrinsically vulnerable to human impact. Freshwater megafauna (i.e., freshwater animals ≥30 kg, including fishes, mammals, reptiles, and amphibians) are subject to intensive and increasing threats. Thirty‐four species are listed as critically endangered on the International Union for Conservation of Nature (IUCN). Red List of Threatened Species, the assessments for which are an important basis for conservation actions but remain incomplete for 49 (24%) freshwater megafauna species. Consequently, the window of opportunity for protecting these species could be missed. Identifying the factors that predispose freshwater megafauna to extinction can help predict their extinction risk and facilitate more effective and proactive conservation actions. Thus, we collated 8 life‐history traits for 206 freshwater megafauna species. We used generalized linear mixed models to examine the relationships between extinction risk based on the IUCN Red List categories and the combined effect of multiple traits, as well as the effect of human impact on these relationships for 157 classified species. The most parsimonious model included human impact and traits related to species’ recovery potential including life span, age at maturity, and fecundity. Applying the most parsimonious model to 49 unclassified species predicted that 17 of them are threatened. Accounting for model predictions together with IUCN Red List assessments, 50% of all freshwater megafauna species are considered threatened. The Amazon and Yangtze basins emerged as global diversity hotspots of threatened freshwater megafauna, in addition to existing hotspots, including the Ganges‐Brahmaputra and Mekong basins and the Caspian Sea region. Assessment and monitoring of those species predicted to be threatened are needed, especially in the Amazon and Yangtze basins. Investigation of life‐history traits and trends in population and distribution, regulation of overexploitation, maintaining river connectivity, implementing protected areas focusing on freshwater ecosystems, and integrated basin management are required to protect threatened freshwater megafauna in diversity hotspots.This work was carried out within the SMART Joint Doctorate (Science for the MAnagement of Rivers and their Tidal systems), funded with the support of the Erasmus Mundus program of the European Union, and is a contribution to the Leibniz Competition project Freshwater Megafauna Futures. S.D.L was supported by the European Unio

    Floating matter: a neglected component of the ecological integrity of rivers

    Get PDF
    Floating matter (FM) is a pivotal, albeit neglected, element along river corridors contributing to their ecological integrity. FM consists of particulate matter of natural (e.g. wood, branches, leaves, seeds) and anthropogenic (e.g. plastic, human waste) origin as well as of organisms that, due to its properties, is able to float on the water surface. In this paper, we provide a comprehensive overview of the FM cycle and the fundamental environmental functions FM provides along rivers. Indeed, FM serves as an important geomorphological agent, a dispersal vector for animals and plant propagules, a habitat, a resource, and a biogeochemical component. Furthermore, we collected data on the amount of FM accumulating at dams and in reservoirs, and related it to key characteristics of the respective catchments. River fragmentation truncates the natural dynamics of FM through its extraction at damming structures, alteration in the flow regime, and low morphological complexity, which may decrease FM retention. Finally, we identify key knowledge gaps in relation to the role FM plays in supporting river integrity, and briefly discuss FM management strategies. (c) 2019, Springer Nature Switzerland AG.This work has been carried out within the SMART Joint Doctorate Programme ‘Science for the MAnagement of Rivers and their Tidal systems’, funded by the Erasmus Mundus programme of the European Union (http://www.riverscience.it). We also acknowledge financial support through the Excellence Initiative at the University of Tübingen, funded by the German Federal Ministry of Education and Research (BMBF) and the German Research Foundation (DFG). OS is thankful for a partial support from IGB equal opportunity fund for young female scientists and DFG (SU 405/10-1). SDL has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant agreement no. 748625

    Freshwater megafauna diversity: Patterns, status and threats

    Get PDF
    Aim: Freshwater megafauna remain underrepresented in research and conservation, despite a disproportionately high risk of extinction due to multiple human threats. Therefore, our aims are threefold; (i) identify global patterns of freshwater megafauna richness and endemism, (ii) assess the conservation status of freshwater megafauna and (iii) demonstrate spatial and temporal patterns of human pressure throughout their distribution ranges. Location: Global. Methods: We identified 207 extant freshwater megafauna species, based on a 30 kg weight threshold, and mapped their distributions using HydroBASINS subcatchments (level 8). Information on conservation status and population trends for each species was extracted from the IUCN Red List website. We investigated human impacts on freshwater megafauna in space and time by examining spatial congruence between their distributions and human pressures, described by the Incident Biodiversity Threat Index and Temporal Human Pressure Index. Results: Freshwater megafauna occur in 76% of the world s main river basins (level 3 HydroBASINS), with species richness peaking in the Amazon, Congo, Orinoco, Mekong and Ganges-Brahmaputra basins. Freshwater megafauna are more threatened than their smaller counterparts within the specific taxonomic groups (i.e., fishes, mammals, reptiles and amphibians). Out of the 93 freshwater megafauna species with known population trends, 71% are in decline. Meanwhile, IUCN Red List assessments reported insufficient or outdated data for 43% of all freshwater megafauna species. Since the early 1990s, human pressure has increased throughout 63% of their distribution ranges, with particularly intense impacts occurring in the Mekong and Ganges-Brahmaputra basins. Main conclusions: Freshwater megafauna species are threatened globally, with intense and increasing human pressures occurring in many of their biodiversity hotspots. We call for research and conservation actions for freshwater megafauna, as they are highly sensitive to present and future pressures including a massive boom in hydropower dam construction in their biodiversity hotspots. © 2018 John Wiley & Sons LtdBundesministerium für Bildung und Forschung, Grant/Award Number: “GLANCE” project (01 LN1320A); European Union’s Horizon 2020 Programme for Research, Technological ?evelopment and demonstration, Grant/Award Number: AQUACROSS (642317); Villum Fonden, Grant/Award Number: VKR023371; Education, Audiovisual and Culture Executive Agency (Erasmus Mundus Joint ?octorate programme “SMART”); EU Marie Sklodowska-Curie programme, Grant/Award Number: H2020-MSCA-IF-2015-706784, H2020-MSCA-IF-2016-748625; Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg (Junior Professorship Program

    Assessing the conservation value of waterbodies: the example of the Loire floodplain (France)

    Get PDF
    In recent decades, two of the main management tools used to stem biodiversity erosion have been biodiversity monitoring and the conservation of natural areas. However, socio-economic pressure means that it is not usually possible to preserve the entire landscape, and so the rational prioritisation of sites has become a crucial issue. In this context, and because floodplains are one of the most threatened ecosystems, we propose a statistical strategy for evaluating conservation value, and used it to prioritise 46 waterbodies in the Loire floodplain (France). We began by determining a synthetic conservation index of fish communities (Q) for each waterbody. This synthetic index includes a conservation status index, an origin index, a rarity index and a richness index. We divided the waterbodies into 6 clusters with distinct structures of the basic indices. One of these clusters, with high Q median value, indicated that 4 waterbodies are important for fish biodiversity conservation. Conversely, two clusters with low Q median values included 11 waterbodies where restoration is called for. The results picked out high connectivity levels and low abundance of aquatic vegetation as the two main environmental characteristics of waterbodies with high conservation value. In addition, assessing the biodiversity and conservation value of territories using our multi-index approach plus an a posteriori hierarchical classification methodology reveals two major interests: (i) a possible geographical extension and (ii) a multi-taxa adaptation

    Preconditioning effects of intermittent stream flow on leaf litter decomposition

    Get PDF
    Autumnal input of leaf litter is a pivotal energy source in most headwater streams. In temporary streams, however, water stress may lead to a seasonal shift in leaf abscission. Leaves accumulate at the surface of the dry streambed or in residual pools and are subject to physicochemical preconditioning before decomposition starts after flow recovery. In this study, we experimentally tested the effect of photodegradation on sunlit streambeds and anaerobic fermentation in anoxic pools on leaf decomposition during the subsequent flowing phase. To mimic field preconditioning, we exposed Populus tremula leaves to UV-VIS irradiation and wet-anoxic conditions in the laboratory. Subsequently, we quantified leaf mass loss of preconditioned leaves and the associated decomposer community in five low-order temporary streams using coarse and fine mesh litter bags. On average, mass loss after approximately 45 days was 4 and 7% lower when leaves were preconditioned by irradiation and anoxic conditions, respectively. We found a lower chemical quality and lower ergosterol content (a proxy for living fungal biomass) in leaves from the anoxic preconditioning, but no effects on macroinvertebrate assemblages were detected for any preconditioning treatment. Overall, results from this study suggest a reduced processing efficiency of organic matter in temporary streams due to preconditioning during intermittence of flow leading to reduced substrate quality and repressed decomposer activity. These preconditioning effects may become more relevant in the future given the expected worldwide increase in the geographical extent of intermittent flow as a consequence of global change. © 2011 Springer Basel AG
    corecore